Structure Reports

Online
ISSN 1600-5368

Lin-Hai Jing,* Shao-Jin Gu and Huan-Xia Zhang

Department of Chemistry, China West Normal University, Nanchong 637002, People's
Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.168$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N, N^{\prime}-Bis(2-pyridyl)naphthalene-1,4-carboxamide

The title compound, $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$, crystallizes in an anti $\mathrm{C}=\mathrm{O}$ conformation. The two amide groups are twisted away from the attached ring by 69.94 (6) and $62.99(7)^{\circ}$. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and also by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Naphthalene-1,4-dicarboxylic acid derivatives are a class of intermediates important for applications as monomers in the preparation of polymers (Fukuzumi et al., 1994; Tsukada et al., 1994). Previously, we have reported the crystal structures of N, N^{\prime}-bis(4-nitrophenyl)naphthalene-1,4-dicarboxamide dimethyl sulfoxide disolvate (Jing, Qin, Gu, Zhang \& Mao, 2006), $\quad N, N^{\prime}$-bis(2-methoxyphenyl)naphthalene-1,4-dicarboxamide (Jing, Qin, Gu, Zhang \& Lei, 2006) and 1,1'-(naph-thalene-1,4-diyldicarbonyl)bis(1 H -imidazole) (Jing, Gu \& Zhang, 2006). We now report the crystal structure of the title compound, (I).

(I)

The bond lengths and angles in (I) are normal. The naphthalene ring system is planar, with a maximum deviation of 0.032 (2) \AA for atom C6. The two $\mathrm{C}=\mathrm{O}$ groups are in an anti conformation. As a result of steric effects, the substituent groups at atoms C1 and C4 are twisted away from the plane of the naphthalene ring system (Fig. 1). The O1/N1/C11/C12 and O2/N3/C17/C18 planes form dihedral angles of 69.94 (6) and 62.99 (7) ${ }^{\circ}$, respectively, with the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$ plane. The O1/ $\mathrm{N} 1 / \mathrm{C} 11 / \mathrm{C} 12$ and $\mathrm{N} 2 / \mathrm{C} 12-\mathrm{C} 16$ planes are inclined at an angle of $20.63(9)^{\circ}$, while the $\mathrm{O} 2 / \mathrm{N} 3 / \mathrm{C} 17 / \mathrm{C} 18$ and $\mathrm{N} 4 / \mathrm{C} 18-\mathrm{C} 22$ planes make a dihedral angle of $12.87(11)^{\circ}$. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) involving the $\mathrm{N} 2 /$ C12-C16 (centroid Cg1), N4/C18-C22 (centroid Cg2) and C1C4/C9/C10 (centroid Cg3) rings.

Experimental

Naphthalene-1,4-dicarboxylic acid (2 mmol) and an excess of thionyl chloride (8 mmol) in dioxane (20 ml) were boiled under reflux for 6 h . The solution was distilled under reduced pressure and a yellow solid was obtained. 2-Aminopyridine (4 mmol) in tetrahydrofuran (20 ml) was added to the yellow solid and boiled under reflux for 1 d . The

Received 30 August 2006 Accepted 31 August 2006
solution was then cooled to ambient temperature and filtered to remove the tetrahydrofuran. The precipitate was dissolved in dimethylsulfoxide and allowed to stand for one month at ambient temperature, after which time colourless single crystals of (I) suitable for X-ray diffraction were obtained.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=368.39$
Monoclinic, $P 2_{1} / n$
$a=13.6987(3) \AA$
$b=9.2100(2) \AA$
$c=15.1404(4) \AA$
$\beta=113.091(1)^{\circ}$
$V=1757.15(7) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer

ω scans

Absorption correction: none 26983 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.168$
$S=1.04$
4020 reflections
262 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.393 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=153(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.54 \times 0.46 \times 0.43 \mathrm{~mm}
\end{aligned}
$$

4020 independent reflections 3685 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0892 P)^{2}\right. \\
& +1.7 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.016 (2)

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~N} 4^{\mathrm{i}}$	$0.96(3)$	$2.16(3)$	$3.105(2)$	$172(2)$
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.94(3)$	$2.14(3)$	$3.066(2)$	$169(2)$
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.95	2.36	$3.303(2)$	170
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cg} 2^{\mathrm{iv}}$	0.95	2.74	$3.404(2)$	128
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Cg} 3^{\mathrm{i}}$	0.95	2.51	$3.296(2)$	140
$\mathrm{C} 21-\mathrm{H} 21 \cdots \mathrm{Cg} 1^{\mathrm{v}}$	0.95	2.80	$3.351(2)$	118
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{Cg} 3^{\mathrm{ii}}$	0.95	2.62	$3.396(2)$	139

Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iv)
$-x+1,-y,-z+1$; (v) $x-\frac{3}{2},-y-\frac{1}{2}, z-\frac{3}{2}$.
N -bound H atoms were located in a difference Fourier map and refined isotropically [$\mathrm{N}-\mathrm{H}=0.96$ (3) and 0.94 (3) \AA]. The C -bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.95 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Centre for Testing and Analysis, Cheng Du Branch, Chinese Academy of Sciences, for analytical support.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Fukuzumi, T., Tajiri, T., Tsukada, H. \& Yoshida, J. (1994). Japanese Patent JP 06298919.

Jing, L.-H., Gu, S.-J. \& Zhang, H.-X. (2006). Acta Cryst. E62, o4306-o4307.
Jing, L.-H., Qin, D.-B., Gu, S.-J., Zhang, H.-X. \& Lei, G. (2006). Acta Cryst. C62, 0561-0562.
Jing, L. H., Qin, D. B., Gu, S. J., Zhang, H. X. \& Mao, Z. H. (2006). Z. Kristallogr. New Cryst. Struct. 221, 200-202.
Rigaku (2004). RAPID-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsukada, H., Tajiri, T., Fukuzumi, T. \& Yoshida, J. (1994). Japanese Patent JP 06298918.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

